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ON REGULAR REFLECTION OF A SHOCK WAVE FROM A RIGID WALL™

V.M. TESHUKOV

The three-dimensional problem of reflection of a shock wave of arbitrary front shape
from a fixed rigid wall is considered. Existence of a piecewise analytic solution
of the problem defining the initial stage of regular reflection is proved. Expan-
sion of solution behind the reflected wave front in converging power series in the
neighborhood of the incident wave (of the moving along the wall intersection line

of the incident wave front and the rigid wall) is obtained for prolonged instants of
time. It is shown that such expansions generally occur only then, when the length
of the trace velocity vector relative to gas behind the reflected wave projectedon
the plane normal to the trace exceeds the speed of sound. A bibliography of public-
ations dealing with the problem of shock wave reflection can be found in /1,2/.

1. Statement of the problem. The motion of an inviscid non-heat-conducting gas is
considered in the region of ¢ (x) >0 with surface I'; : ¢ (x) =0 (V¢ = 0) assumed to be a rigid
impervious wall at which the gas velocity vector u satisfies the relation

wWo =0, x=(, 4y 25T, (1.1)

Let the piecewise-analytic solution of gasdynamics equations

d d, . d:
pd—l:—}—szo, TI:+ pctdivu=0, —(—%:0, p="(p:s)

(1.2)

defining shock wave propagation toward a rigid wall when ¢<{0, be known. Here p is the
pressure, p is the density, s is the entropy, ¢ is the speed of sound, and Y (p, s) is an analy-
tic function that specifies the equation of state of a normal gas /3,4/. This means that
ahead and behind the shock wave front u(x, t), p (X, ?), s(X, t) are analytic functions of their
arguments, and the shock wave surface I'; is an analytic hypersurface in the four-dimensional
space X, t. The Hugoniot relations

[pvnl==0, [p+p0?l=0, [e4ppt+ Y, 2]=0, [us]=0 (1.3)

and the condition of entropy increase are satisfied on TI';. Here [f] denotes the jump of
quantity f at transition through the discontinuity, v, = D, — u,, u, and D, are the velocities
of gas and of shock wave front, respectively, in the direction of the normal n to the front,
us; 1is the tangent velocity component, and & is the specific internal energy. The solution
ahead of the front satisfies condition (1.4). At instant ¢ =10 the shock wave front reaches
the wall touching it at point @. Further motion of gas has to be defined.

When ¢>0 the solution structure changes, a shock wave reflected from the wall makes its
appearance. The region of determination of the generalized gas motion in the space x, ¢ con-
sists of three subregions, viz., region &; bounded by T, the incident wave surface I, and
the plane ¢ =0; region §, bounded by T,, the reflected wave surface TI'; and the plane

t=0; and region Q; bounded by T; and I'; (Fig.l illustrates the two-dimensional case).
Solution in €; and Q, is obtained idenpendently by solving the problem of an arbitrary dis-
continuity on the curvilinear surface v,, (the intersection of I, and the plane ¢ = (), and
the incident wave surface I'; is determined for ¢ >0 /5/. In what follows the solution in
Q, and Q,, and surface I, are assumed known. We have to construct the solution of Egs.
(1.2) in Q% which satisfies conditions (1.1) and (1.3) on I}, T;, and at the same time deter-
mine the reflected wave surface Ijy.

2. Relationships at the shock wave. In the case of regular reflection which obtains
in the initial stage the unknown surface Iy must pass through the known two-dimensional sur-
face ¥, , the locus of I, and I, intersection points (Fig.l). Let surface v, be para-
metrically defined: ¢ =t (B, v), X = X, (B, ¥) with ¢, and X, being analytic functions of para-
meters f, vy, and Xop = 0, Xy 7= 0, Xop X Xgy 7= U. We introduce in region Q, new coordinates
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168 V.M. Teshukov

1, @, B, y such that 1 =0 corresponds to the shock wave surface, and ¢ - () to the rigid wall.
The respective substitution of variables conforms to t==t(t,a,Bv= Tr-a+iH Py, x=
X (1, #, p, ). Function y = x(0, a, f§, ) is determined by the solution of the Cauchy problem

Yo=H, ¥la=o = %o (B, v)

Function His selected so that equations ¢ s- « - t, (B, y), x = x (0, o, f}, ¥) parametrically
define the shock wave surface [

Let the equation of I'; be of the form ¢, (x, {) -=0. Then ¢, (x(©0, o, B ¥), (0, &, fi, y)) =0
identically with respect to «, f}, y. Differentiation of this equality with respect to =, [}, ¥

yields the formulas
(@ eV =0, @)+ xpVpr=0, t,(p1): -+ x.Vepr =0

Since the shock wave front normal to » and the quantity D, are linked with ¢, by the
relations n .. Vg, | V¢, ™% D, = —(¢): | Vg1 |, we have the following equalities:

xpn=10,. xyn==t,0, |n{=1 xn=D,
of which the first three formulas enable us to determine n in the form
n={(m[*— D2 |k[/m+ D,k X m)}|mi|2, m=Xp X Xy, Kk==1xy — [,Xp (2.1)

where k is a vector tangent to the shock wave front by virtue of (2.1).
Function H must, therefore, satisfy the relation Hn =D,. where the normal n is defined by
formula (2.1). Specific selection will be made in Sect.3. Writing the preceding formulas in

the form
(Xp—Tgw)n=1s (D) — 1), (Xy—t)yn==t,{D, —u,), |n|=1

we obtain for n another formula

n={lq —v?|kPtq +eak x @} q] (2.2)
q = (xg — tgu) X (x, — {yu)

which is valid when |q | > |v,k | and the inequality |m |z | D,k | is satisfied in (2.1). If func~
tion x (0, «, B, ¥) is known, X (1, @, B, y) is determined similarly by solving the Cauchy problem
Xi=0G, x| o=x(0,287)

Function G is selected so that the contact characteristic /3/ that passes at 1 = 0 through
the cross section a = const of surface I'; is parametrically specified by formulas t =1+ a -+
BV, x=x(7,a, B, y) for fixed o. If the equation of that characteristic is of the form
@y (2, t) = 0, then as previously we obtain the equalities

(g2): Ve =0, (@) + X:V@2=0, g (pa) —XgVPa =10, 5 (pa)s + X, Vepo =0
and their corollaries
(xp—tpw)me=0, (x;—ty)ne=0, (x;—~wnp=0, |ny|=:1

Hence n,=gq |q|*! and function G must satisfy the relation (G — u)q = 0. The specific
selection of G is effected in
Sect.3. Since kq = kn = 0,
vector k at points ¥, is direct-
ed along the tangent to the line
of intersection of the incident
wave front and the wall, i.e. to
the trace which the incident
front leaves on the wall at in-
stant ¢ = const. A three-dimen-
sional picture of this at instant
t == const appears in Fig.2 (Vaf
Vst Yot are cross sections of Ty,
I's, vo at ¢t = const).

For analyzing the relation-
ships at the shock wave it is
convenient to use the vector w

Fig.l Fig.2

w=(q X k)[k[?=u— (k)| k[?k — (k x m)[k[2

which at points 7y, represents the difference of projections of u on the plane normal to k and
the trace motion velocity on the wall in a direction perpendicular to the trace. Since by
virtue of (2.2) w, = Wn = —y,, hence on T,
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fow,] = 0, [P + pwn2] =0, [¢+ Pp—l -+ 1/2 wtl =0, [wel =0
Prom the corollaries of relations at discontinuity
W= |wm B—p—pooi 4+ (W w2 =(p—p) %, — )

where v ==p™', and the quantities ahead of the front are denoted by subscript 1 and those be-
hind it have no subscripts. For the angle 6 of turn of w in the II plane orthogonal to k we
have at transition through the discontinuity (cos B == (ww,)|w|IX |w, 'Y} the relation

sin?f==(p— p1) 1 —v— v {Wi [P (p— p)} X WP —(p—p) (1 + o) (2.3)

v=g{p, p1, V1)
where 0 is the p-polar.

Function g defines the Hugoniot curve. In the 8, p plane curve (2.3) is determinate when
(, — v)| Wyt > p — py > 0. Rlong that curve |sin 8]<1 and 6 vanishes when equality is reached
in one of inequalities. Conseguently 6 reaches its maximum value 8, (limit angle of turn) at
some point  p = p,. )

In what follows, we assume that the equations of state of the gas are such that the right-
hand side of (2.3) is monotonic when p < py and p >ps and that there exists a py (p; < pe<
Ps) such that along the curve |w 2= |w;{?— (p — p){v; -+ V) < ¢® when p >p, and | w |* > ¢* when
p < pe. A polytropic gas satisfies these conditions.

Using the identity

sin?@={q X @ *{q|?|@u[? q={gm)m -+ (um)k x m)}|m|*
we obtain from (2.3} the relation

h—n _ {h’ — ) =) —{kPel g e — Px)‘z}’h
(4 F B2 R P) (14 b2 [ R [ —(p— o) & +2) TR ] (2.4)

k= (um) (qm)™, by = (wm)(gym)™"

At point Q, where the shock wave front touches the wall, (g =ty =0, k = 0), and (2.4) be-
comes the equation of the (p, u,)-diagram of shock waves, which is determinate and monotonic
for all values of p(pe-> o as |k |- 0). In the region of determination (2.4)

jqP — vk P=1kF(lu P — )=k (W P — (p— o) — 1) 0 >0
From (1.3) with allowance for the equalities

[xpul = (xpn) [} =10, [un]y  [xpu] =, (0,1
we obtain two corollaries

la]=1b]=0 (2= (uxp)—tg(epv i lthl?} : (2.5)
= (ux,) — £, (e + pv + U] u?)

When xg, %y, ip, Iy at some point of surface I'jthe parameters of gas ahead of the front, and the
quantity k (h << h,) behind it are known, it is possible to determine all parameters of gas be-
hind the front, vector n and D,.

In conformity with (2.1}, at point @ where f = ¢ 0, n=:m|m|*! we have h=u,|{m|t Equa-
tion (2.4) uniquely determines p in terms of &, and subsequently all remaining parameters of
gas /3,4/. At points I}, where W+ 4,*5 0, Eq.(2.4) has for a given % two solutions p_, p.{p-
< Py < Py (an analog of "weak™ and "strong" shocks in the theory of steady motion). But, when
12 4 t,%-» 0, only p_ approaches p which is uniquely defined at point Q(p,—+ > as |k|—»0). Hence
on considerations of continuity of solution behind the front we uniquely select the "weak" shock.
Using the Hugoniot adiabatic curve and the known value of p, we determine =, and using known
p, v, p;, vy we obtain . The following identities apply:

ey =Riqim{( Rk jqP=1mP+2k(bxg—ax)) — Z{k P e+ po)— (b — tap
u= {{um)m + (ax, ~bxg) X m (e + po+1L{uf) kX m)} {m|

by virtue of which it is possible to determine u in terms of the known quantities h,ua,b,p,9, Xgy
Xy 18 Iy Then, n is determined using formula (2.2), and Dn = v, +4 (un), At points y, the normal
to the rigid wall coincides with vector m|m{?!, hence h=0 on +v,. It is, consequently, pos-
sible to determine on v, all parameters of gas behind the front, the normal =n, and D, as analy-
tic functions of variables B,y at those points v, where the regular reflection (p<p,) is
possible.
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3. Transformation of equations and boundary conditions. we introduce inregion
Qs new coordinates, and the functions that define the passage to them are determined in con-
formity with Sect.2 as the solution of the Cauchy problem

Ya=Dp(hyp X ¥y [P — D2 Tuyy — Ty 7o (yp < ¥9)s Ta=1 (3.1)
Y Ia-:o =xeB: %) Tleo=1 (B V)

Xe=h(xp 3 Xy, b=1, X|ey=VY|=0r Fh=y=T

where D, is a function of h, yp, ¥y, I'p, Ty and of quantities ahead of the front considered tobe
functions of v, 7, as determined in Sect.2. For the transformation of equations of motionwe
use the formulas

a a _ a
U Al + 1705 — %) X (50— Xa) g (S —xa) X (xp — fp%0) 5 ]

7 a e | d L4
_;T::JW_Hm‘ 2 {u(xv X m)d—ﬁ—-u(x;g X m)—E}
A= I""(xp — IpXa) X (Xy — fyXa),
po==— I (xp — {pxe) X (xy — LX)

I = (x; — Xo) {{xp — tpXe) X (Xy — tyXq)},  J == (qm) | m |2
The feasibility of passing to new variables depends on the quantity / not becoming zero
or infinity. When 71 =0 we have
I=—|m{?v,J Y ({m}>— 12|k}

This formula defines the required property of [, at least on v,
The transformed equations (1.2) are schematically represented in the form

sp=dysp + dosy. ag=e,Vg - eVy,  br=e3Vp - eVy (3-2)
U= BUg + DUy + ENVy + FuVy -+ Hy (xa)p + Ha(xa)y
u={,|
=,
ORI SR 1(wzl.nm*(ﬂml-’c*——lxxulw“
TTE A ez m BT, (hw)

where V is the vector solution whose components s, a, b, &, p, g, &y, Ys, Yy, 28, %y and coefficients
d;. e;o B, D, E,, ll; are scalar, vector-valued, and matrix-valued analytic functionsof variables
V, x,, B, v, @ Matrix D vanishes when T ==0.

In conformity with Sect.2 boundary conditions are of the form

t=0: s==F(t xp. X X0, B, 9), = fa(xp, X, B, 7) (3.3)
b= fa(xp X, 0, B. 7), p=1 (. xp Xy, x,0,B,7); a=0: h=0

where j, are analytic functions of their arguments close to the values of the latter on vy, .
The dependence of f, on x,«, f§, ¥ is linked to the appearance in the relations at the shock
wave front of parameters of gas ahead of the front, which are known as functions of x,{. The
input problem is, thus, reduced to solving problem (3.1)— (3.3) followed by the inversion of
representations that define transition to new variables.

4. Construction of solution in the class of formal power series. The problem
formulated here is a generalization of the Goursat problem. The problem of derivation of its
solution in the class of formal power series in variables 1, a. ff — By, ¥ — V1, where (0, 0, f,, V)
are the coordinates of an arbitrary point N of surface 7Y . reduces to the calculation of deriva-
tives of the solution at that point.

We write the last eguation of system (3.2) in the form

U= ByUs | F (B =B i, pmpr, v=2.) (4.1)
whose two correlations
i J .
BNJUJ',“_]' — Uo,n - 52 Blzrv—le—l, n-k =I>31 B;I'V-l (BNUI,O - U(),l + F)k-l, nek =— 0 (4.2)
g =

Bf-v-nt, pej— Upg— 2 BN " Py, = ]‘E By (Upy — ByUso— Flpg =0

k341 =51

(F1s = 069 100i0)
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are useful for calculating the derivatives.
1f AUy, is specified for a =0, and for 1 =0 is AU,, then by multiplying (4.2) by
A, A, , we respectively obtain a system of two equations in Uj; ,_;. In the considered here
case A, =(1,0), A, = (—%,1) (% = 8f/0h |.=). To clarify the question of the obtained system
solvability, it is expedient to reduce matrix By to the diagonal form. The eigenvalues of
matrix By are of the form
vrp = (M) = (2 [P — A X R [BY (% — Ay

and real when |wy|>»cy (subscript N denotes quantities at point A). Below, the case of
strict inequality is called supersonic, and that of strict reverse inequality, subsonic.

In the neighborhood of point Q on ¥, (i.e. for small 1 we always have the supersonic
case, while for large ¢ transition to the subsonic case is possible (but not obligatory) de-
pending on the geometry of incipient wave, its velocity, etc. Since all quantities on 1y, are
in conformity with Sect.2, determined prior to the solution of the problem, the "subsonic" and
"supersonic" points, as well as the points at which the limit angle of turn of vector w, are
a priori known.

In the subsonic case v, =¥, For v, v, matrix By reduces to the diagonal form

By = M7yxM, v = diag {¥5 v,}
It is convenient to introduce new unknown functions

r h--Kp
=) )

K=—I(J*ufc?—|bx p[h¥e™ (J|m)y

Equations (4.1) assume the form
— P
T1=Vf.-ra—‘1l71« lt="lla+1p21 “ $_»H=J[F (4.3)

Solving the equations obtained by multiplying (4.2) by A,;, A,, we obtain the formulas

n
n—] h-1—n n—;+}.-1 -n,
rj, n-]_An l 1IJ1.-x n—k 1 2 Vo "pﬁ 1. n=k 1 (4.4)
=1

2 d 5 1"~l»’k—l n-k + V" d —" (rOn lo,n) + V:.,z'_j (ln,o - drnyﬂ)}

R=jt1

lJ,n—J —A—l {2 dv2 Vljlph 1, n=k + 21 d\ -]-11|JI|—1 n-k +

2 vyl Y, ner 4 dvy? (ro,n Lo} + vovi? (lnjo — drno}

k=j-i-1

Ay =v"vi ™ —d, d= K — 1)K + 1)

These formulas are used for calculating the derivatives of order n with respect to vari-
ables t,a of functions r,! in terms of derivatives of order n — 1 of 1pi and derivatives
(ro.n — lon)a=os (o — drng)i=0 are known by virtue of (3.3). The necessary condition of solvabil-
ity of equations for rj, p-j Ij,u; are of the form A, % 0,n=1,2,.. .. If A, vanishes, we ob-
tain a contradiction to the assumption of existence an analytic solution of the problem with
arbitrary data.

In the supersonic case v, >v, >0, |d| <1 and the conditions of solvability are always
satisfied. In the subsonic case v, =17V, and K is an imaginary number. 1If Vvt e 20,
d=1¢e"0 (0 (o<1, 0<{8<1, the solvability condition is of the form "0 __ o206 £ () for
all positive integers n. The quantities \, vanish on straight lines ¢ = &n™! - jn™! (j=0,1,

,n—1) that lie in the unit square of the plane (0, 8). Points of these straight lines for
various n, j form everywhere in that square a compact set. Then in any neighborhood of point
(6, 6) with A, 0 (n =1, 2,...) there are points at which certain .\, == 0. This property can
be interpreted as instability of the subsonic problem in the class of analytic functions.
Since on 9, ¢ and § are continuous functions of fi and y, it is possible to maintain that
when ¢ == const, § 5= const there are points on vy, at which A, = (. Consequently the problem of
regular reflection has, generally, no analytic solution in the subsonic case.

Below, we consider the supersonic case. Tt is convenient to transform the boundary con-
ditions that link r and | to the form

(r—Da=g=0, (—drjmy=g1(r N xXp» X, 2, B, 7) (4.5)

where g, is an analytic function of its arguments, such that (vg,/dr)y = 0.
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Lemma. A unique solution of problem (3.1}~ {3.3) exists in the class of formal power
series invariables T, a, §— B, ¥— 7.
Proof is by induction over the total number » of differentiation with respect to t and «.
In accordance with Sect.2 all sought functions are known on y, when 1= a =10, Differentiating
them with respect to 8 and v, we obtain all derivatives with respect to these variables. If
all derivatives with the over-all rn—1{ of differentiationwithrespect to 71,«, the deriva-
tives of r and ! of order » with respect to 1t and « are determined using (4.4) and the form-
ulas obtained by differentiating (4.4) with respect to B and <. Derivatives of remaining
functions are determined by equations obtained by differentiating (3.1)- (3.3).

5. Existence of analytic solution of the problem in the supersonic case.
Convergence of formal power series is proved by costructing majorants of sclutions that are
obtained by solving the auxiliary majorant problem. As a preliminary, the nonlinear equations
(3.1) in x and y are reduced to guasi~linear equations in x and ¥y by extending them to deriva-
tives, and boundary conditions of the problem are reduced to a homogeneous form by substitut-

ing the unknown functions (subscript unity denotes new notation) vi=Y — X (B, ¥), X, =X —¥
and the respective substitutions of derivatives of these functions: further
=8 —f, ay=a—fu bbb fo rn=r—g{l - L =1- g {1 —a™
For the transformation of guantities we obtain the homogeneous boundary conditions
=0 yy=¥p=Yy=0 r—-54L=0 (5.1)

=1 xlxx,ﬂmxly:xm:(}, al:-—:b‘=81::ll-d1‘1:0

Formulas of the form (4.4) also apply to transformed ' and % These formulas and the
transformed equations imply that the problem with boundary conditions of form (5.1), where the
equality sign is replaced by the majorizing relation (s;li=o >0, etc.) can be taken as the
majorizing problem. We recall that the relation f>»g means that the coefficients of expan-
sion of function f in series in powers of its arguments are not lower than the absolutevalues
of respective coefficients of g,

Equations of the majorizing problem are obtained as follows. Coefficients at derivatives
in the right-hand sides of transformed equations and in the expressions of transformed func-
tions P, ¢* are replaced by their majorants, with the retention of the property of some co-
efficients vanishing at point /N. Functions that satisfy "like" equations are majorized by
one majorant.

Let Y be the majorant for all components ¥, ¥is, Yiy» X the majorant for components Ty,
Iy Ty £ the majorant for components Fia, S the majorant for function s, R and L the maj-
orants for ry and [, and 4 the majorant for e¢; and &,. The majorant system is of the form

Yo=F¥1 Xe=FoYo - YW, Ze=Fy(lo - R4 Vi+ Ve (5.2)
Sy=F, (La e IRp Wy - ‘{'12), "1T:F5ll'm17

valtg = Hy + Fe (W + ¥y)

Le=vLo+ Fo (¥, -+¥), E=mr--ma+B—F 4+ v—v

Y, = Zp Sy, W o (S DS+ Sy D=+ X 2255 44 R L)

i

where m; and 1, are constants which will be defined later, and F; are the majorants of coef-~

ficients of input eguations.
The solution of system (5.2) must vanish at point N. Hence the majorants of coefficients

in that point neighborhood can be taken in the form

Fi=K;(1 — (3 --8 My
with appropriately selected constants K;, M;. Formulas similar to (4.4) can be obtained for
Egs.(5.2), from which follows that, if we set in boundary conditions (5.1) d =1, the obtained
problem is also a majorant for the input problem.

We seek a particular solution of Egs.(5.2) that depends only on g, vanishes at point
=0, and such that R = L. By virtue of (5.2) the last requirement provides the following
relation between 1; and My 1 = Y/, (v, + v;) N The system of eguations for finding the part-
icular solution X (&), Z (&), S (), 4 (§), Y (£), R(§) = L (&) is of the form

Y = Py (257 - 1), wympX = F, (g, Y7 - 227 + 1)

wmMel = Fy (ol o, R + W), umpd” = Fy (227 + 1)

eSS = Fy (L’ A xR+ W), wanpR = Fo¥y

wy o= oy - vy)y %y = Yy (v i), Wa={(2 -1+ -+ D2 4+ 1
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The substitution of expressions for Y’', R'. L’ from the first and last of equations into
the right-hand sides of the remaining ones together with the linear combination of equations
yield for function X the equation

Me2" = (F; + 7' Fy (i Fy + 1) + 0 7'F)QRE + 1) -+
(™ (F3 -+ F)((1 + )%™ Fo == 1) - 217 Fo)(¥5 — 1)

In the neighborhood of point ¥ =t = 0 this equation can be solved for IX’. For this a
fairly large parameter m, is selected, namely

N > 2(Ky - * U Ka (K -+ 1) - oK) +-
27" (Ks -1 Ka) (13- %) 'K + 1) 4 223" Ko)

The equation for the determination of % now assumes the form
= ®(, 8 (5.3)

with function @ of the majorant type (with positive coefficients of expansion in series in
powers of its arguments in the neighborhood of point Z= £ = 0). By the Cauchy — Kovalevsky
theorem there exists an analytic solution of Eq.(5.3) that is, also, a function of themajorant
type, and X (0) = 0. Using the known function ¥ we determine functions Y, X, Z,;S, 4, R=1
which are also of the majorant type. We, thus, obtain the particular solution of the majorant
system (5.2), which satisfies the conditions

Y |a=o> 0, X |t=0 \> 0, 2 ’t—-—o> 0, s It=0 > 0, A |r=0> 0 ’ R=L

A successive calculations of coefficients of expansion of this solution in power series will
show that these series majorize the power series constructed in Sect.4.

6. The one-sheeted mapping of (x,a, B ¥) —~ (t, z, ¥, 2. The Jacobian of that mapping is
finite and nonzero at points of y. This enables us to use locally in the neighborhood of
every point of v, the implicit function theorem. For small t,a (i.e. in the y, neighborhood)
the mapping is one-sheeted, hence the equalities

t(ty, a1, B V) =t (Te @ By Vo) X (T @y By V) = X (T @y Boy V)
imply the equalities
T =Ty, 4 =0y PBi=fy V=T
By the definition of function t we have a - v, 41, By, 7)) = &3 + T + #o (Bgs ¥2)» 1IN conformity
with (3.1) we have for functions «x(r, a,§,7) valid the following formula

o T
x(t e B, 1) =% B 1+ [HO LB DE+{GM o b van (6.1)
0 1)

where H and G coincide with the right-hand sides of Egs.(3.1), and it is possible to substitute
in H function x for y owing to their equality when 1=0.

Consider the neighborhood of ¥y, in which |H|< €, |G|<C; (¢, is a positive constant).From
(6.1) we have the inequality

Ix (e bV —~x%B NI <t a
Then the feollowing two inequalities are also satisfied:
Fxo Brs Y1) — %o By ¥ [ << Co (1p 42y - Ta+ )y [ o (Bra V) — 2B 1) | <Ty 0y = Ty 4 @y
The specified mapping := (B, 7). x =x, (B, y) is such that from the last inequalities we have
|ﬂx—ﬁzl'f‘|Y1“Tz|<ca(1’1+a1+"2+az)

with some positive constant (, By virtue of (6.1) the relation x (1, ey B v) = X (Tp aq Bay 72)
can be written in the form

X (Bry 1) — %o (Bay V2) — (0ts — ) H(Q, 0, By, 5} —

ot
(F2 ) G (0, 0 By v2) = — [ ((0, 8, o, v) — H(0, &, By v)) dE—
0

‘E‘ o2
§(6 0 o B 1) = 6y B 2 i - (B, 2, B 1) —
0 &

Tr
H(O, 0, B 120 84§ (6 (0, 0 B 1) — 6 (0, @y Buy 1))

Ty

from which we obtain the inequality
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| (ch (Bz, v2) — tg (B2, ¥2) G (0, 0, Bay 1)) (By — Bo) + (x(]v (B Vo) —
iy (Bz: 12) G (0, 0, Bay 7)) (¥ — v2) - (H (0, 0, Bo, ¥2) —
G (0,0, Bay 12)) (o0 — @a) | < Cy (15 - @y - T -1 0t) ( | 81—
Bo| - (v~ vol+]ay—ag])

with some constant €,>0. From the obtained inequality we obtain for small 1,1, o, 2 the
required equalities by virtue of the linear independence of vectors xB-—tﬁG,xv——sz,H -G at
points of +y,. The one-sheeted property of mapping is proved. In the indicated neighborhood
of v, the mapping can be inverted yielding a solution in the form of analytic functions of x,:.

The region in which the problem was solved comprises the band 0< (< ¢, with some > 0.
The obtained solution, thus, defines the initial stage of shock wave reflection from the wall.
An analytic solution of the problem of regular reflection that is uniquely determined in some
neighborhood of the incident wave trace moving along the wall was obtained for large : under
the condition of analyticity of function that define the gas flow in the neighborhood of the
incident wave front. The above reasoning shows that, when the projection on the II plane of
gas velocity relative to the trace behind the reflected shock wave front becomes subsonic (at
small t it is higher than the local speed of sound}, the conditions of solvability of the
problem in the class of analytic functions are not satisfied, which implies the appearance of
solution singularities. In the case of convergence of the derived series and one-to-one map-
ping (1, @, B, &) - (¢, 7, ¥, 2) the obtained solution defines the total flow of gas behind the reflect-
ed wave, and not only in the trace neighborhood. The transition from a regular shock wave re-
flection to the irregular one requires investigation.

The author thanks L.V. Ovsiannikov for his interest in this paper.
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